Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Plain Language Summary</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Objectives</td>
<td>2</td>
</tr>
<tr>
<td>Criteria for Considering Studies for This Review</td>
<td>2</td>
</tr>
<tr>
<td>Search Methods for Identification of Studies</td>
<td>3</td>
</tr>
<tr>
<td>Methods of the Review</td>
<td>4</td>
</tr>
<tr>
<td>Description of Studies</td>
<td>4</td>
</tr>
<tr>
<td>Methodological Quality</td>
<td>4</td>
</tr>
<tr>
<td>Results</td>
<td>4</td>
</tr>
<tr>
<td>Discussion</td>
<td>5</td>
</tr>
<tr>
<td>Authors’ Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>Notes</td>
<td>6</td>
</tr>
<tr>
<td>Potential Conflict of Interest</td>
<td>6</td>
</tr>
<tr>
<td>Sources of Support</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>7</td>
</tr>
<tr>
<td>Tables</td>
<td>15</td>
</tr>
<tr>
<td>Characteristics of included studies</td>
<td>15</td>
</tr>
<tr>
<td>Characteristics of excluded studies</td>
<td>17</td>
</tr>
<tr>
<td>Graphs and Other Tables</td>
<td>20</td>
</tr>
<tr>
<td>Index Terms</td>
<td>20</td>
</tr>
<tr>
<td>Cover Sheet</td>
<td>20</td>
</tr>
</tbody>
</table>
Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis (Review)

van der Schans C, Prasad A, Main E

This record should be cited as:

This version first published online: 24 April 2000 in Issue 2, 2000.
Date of most recent substantive amendment: 09 February 2000

ABSTRACT

Background
Chest physiotherapy is widely used in people with cystic fibrosis in order to clear mucus from the airways.

Objectives
To determine the effectiveness and acceptability of chest physiotherapy compared to no treatment or spontaneous cough alone to improve mucus clearance in cystic fibrosis.

Search strategy
We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.

Date of the most recent search of the Group's Cystic Fibrosis Trials Register: September 2006.

Selection criteria
Randomised or quasi-randomised clinical trials in which a form of chest physiotherapy (airway clearance technique) were taken for consideration in people with cystic fibrosis compared with either no physiotherapy treatment or spontaneous cough alone.

Data collection and analysis
Both authors independently assessed trial eligibility, extracted data and assessed trial quality.

Main results
One hundred and twenty-six trials were identified by the search, of which six cross-over trials with 66 participants were found eligible for inclusion in the review. Five studies were single treatment studies; in one study each treatment regimen was used twice daily for two consecutive days. Three studies, involving 36 participants, found a higher amount of expectorated secretions during chest physiotherapy as compared to a control period. Two studies, involving 24 participants found no significant effect on pulmonary function variables following intervention. In four studies radioactive tracer clearance was used as an outcome variable. In three of these, involving 28 participants, it was found that chest physiotherapy, including coughing, increased radioactive tracer clearance as compared to the control period. One study of eight participants, reported no significant difference between chest physiotherapy, without coughing, compared to the control period.

Authors' conclusions
The results of this review show that airway clearance techniques have short-term effects in the terms of increasing mucus transport. No evidence was found on which to draw conclusions concerning the long-term effects.

PLAIN LANGUAGE SUMMARY

There is some evidence to support short-term but not long-term beneficial effects of chest physiotherapy in people with cystic fibrosis.
Excess production of mucus leads to recurrent infection and tissue damage in lungs of people with cystic fibrosis. It is important to clear secretions using medications and chest physiotherapy (CPT). Physiotherapy clears secretions by various drainage and breathing techniques or mechanical devices or both. Daily physiotherapy is time-consuming and burdensome. Airway clearance techniques have short-term beneficial effects on mucus transport. Four studies measuring radioactive tracer clearance, found increased clearance with CPT; three studies measuring expectorated sputum, found a higher amount with CPT. There is currently no clear evidence of long-term effects in chest clearance, quality of life or survival.

BACKGROUND

Cystic fibrosis (CF) is a common inherited life-limiting disorder. Persistent infection and inflammation within the lungs are the major contributory factors to severe airway damage and loss of respiratory function over the years (Cantin 1995; Konstan 1997). Excessive production of thick mucus may overwhelm the normal mucus transport mechanisms and thereby lead to airway obstruction and mucus plugging (Zach 1990). Removal of airway secretions is therefore an integral part of the management of CF. A variety of methods are used to help remove secretions from the lungs, some physical, i.e. chest physiotherapy, and some chemical, i.e. medications and inhalation therapies. Treatment methods which improve mucus clearance are considered essential in optimising respiratory status and reducing the progression of lung disease.

Chest physiotherapy has, for a long time, played an important role in assisting the clearance of airway secretions and is usually commenced as soon as the diagnosis of CF is made. However, the performance of chest physiotherapy may be unpleasant, uncomfortable, and time-consuming. Early chest physiotherapy relied on techniques for which the assistance of another person, such as a physiotherapist or relative, was needed and which included postural drainage, percussion, vibration, and shaking performed by an assistant and huffing or coughing. More recently, several self-administered alternatives to these conventional techniques have been developed. These include the active cycle of breathing techniques (ACBT), forced expiration technique (FET), autogenic drainage (AD), positive expiratory pressure (PEP), flutter, high frequency chest compression (HFCC) and exercise. We have defined all of these methods under the interventions below. These methods of treatment help to give the individual with CF more independence in their management. Despite the expansion of treatment modalities, there remains little evidence supporting their efficacy (Prasad 1998; van der Schans 1996). A previous meta-analysis (Thomas 1995a) concluded that standard chest physiotherapy resulted in more mucus (phlegm or sputum) expectoration than no treatment in people with CF, however a recent Cochrane review reported that there is not enough evidence to support or refute mucus clearance techniques for people with COPD or bronchiectasis (Jones 1998). This review compares the efficacy of any of these interventions as compared to no treatment or spontaneous coughing alone. Subsequent reviews will aim to determine whether a specific type of treatment offers any advantage over others.

OBJECTIVES

To determine the effectiveness of chest physiotherapy (airway clearance) compared to no treatment or cough alone in people with CF. This review does not address all possible comparisons between the multiple treatment techniques available for people with CF. This review is the first in a series of reviews which will compare the efficacy of different treatment modalities.

The following hypotheses will be tested: chest physiotherapy, whatever the type of intervention, is more:
(1) effective than no chest physiotherapy;
(2) effective than spontaneous coughing alone;
(3) acceptable than no chest physiotherapy;
(4) acceptable than spontaneous coughing alone.

CRITERIA FOR CONSIDERING STUDIES FOR THIS REVIEW

Types of studies

Randomised or quasi-randomised clinical trials.

Short-term studies (less than seven days duration, including single treatment studies) will be analysed separately from studies of longer duration.

Types of participants

People with CF, of any age, diagnosed on the basis of clinical criteria and sweat testing or genotype analysis.

Types of intervention

Chest physiotherapy of any type (see below) compared to no chest physiotherapy or spontaneous coughing alone.

In existing literature and in practical terms, variation occurs in the application of specific techniques. For the purposes of this series of reviews, it is necessary to group these variations under their broader headings. Separate analysis of each variation would render the reviews unmanageable. The following interventions aim to improve mucus transport or facilitate expectoration:

Conventional chest physiotherapy

This will include any combination of the following: postural drainage; percussion; chest shaking; huffing; and directed cough-
ing. It should not include the use of exercise, PEP or other mechanical devices.

Positive expiratory pressure (PEP) mask therapy
As described by the authors to be the primary intervention, with or without additional techniques. PEP is defined as breathing with a positive expiratory pressure of 10 to 25 cmH\(_2\)O.

High pressure PEP (hPEP) mask therapy
As described by the authors to be the primary intervention, with or without additional techniques. It is a modification of the above PEP technique but includes a full forced expiration against a fixed mechanical resistance.

Active cycle of breathing techniques (ACBT)
This includes relaxation or breathing control, forced expiration technique (FET), thoracic expansion exercises and may include postural drainage or chest clapping.

Autogenic Drainage (AD)
As described originally by Chevalier or modified versions thereof. The authors should have identified AD to be the primary intervention, with or without additional techniques.

Exercise
With the sole purpose of improving mucus clearance as the primary intervention, with or without additional techniques.

Oscillating devices
Oscillating devices including flutter or cornet, thoracic oscillation, and oral oscillation. Flutter or cornet as described by the authors to be the primary intervention, with or without additional techniques. These devices produce an oscillatory PEP effect. Thoracic oscillation as defined by the authors to be the primary intervention, with or without additional techniques, to provide oscillation to the chest wall. Oral oscillation as defined by the authors to be the primary intervention, with or without additional techniques, to provide oscillation to the airways via the mouth.

Two authors independently categorised the physiotherapeutic interventions.

Types of outcome measures
(1) Expectorated secretions (mucus, sputum, phlegm), dry or wet weight, or volume
An increase in the amount of expectorated secretions as a short-term effect of the intervention is considered as beneficial.
(2) Pulmonary function tests
Forced expiratory volume in one second (FEV\(_1\)), forced vital capacity (FVC), forced expiratory flow between 25% and 75% expired FVC (FEF\(_{25-75}\)) post-intervention objective change from baseline compared to control
(3) Oxygen saturation measured by pulse or transcutaneous oximetry
(4) Total lung capacity (TLC) and functional residual capacity (FRC)
Objective change from baseline compared to control
(5) Mucus transport rate
Assessed by radioactive tracer clearance
(6) Radiological ventilation scanning
(7) Subjective perception of well-being, ability to participate in activities of daily living
(8) Therapy compliance
(9) Objective change in exercise tolerance;
(10) Nutritional status
Assessed by growth, weight, body composition
(11) Number of respiratory exacerbations per year
(12) Number of days in hospital per year
(13) Number of days of intravenous antibiotics per year
(14) Cost of intervention
Equipment and duration
(15) Deaths
Outcome data from longer-term studies (more than seven days) will be grouped into those measured at one, three, six, twelve months and annually thereafter. If outcome data is recorded at other time periods, then consideration will be given to examining these as well. Short-term studies are defined as studies with a duration less than seven days.

Search methods for identification of studies

See: Cochrane Cystic Fibrosis and Genetic Disorders Group methods used in reviews.

Relevant studies were identified from the Group’s Cystic Fibrosis Trials Register using the terms: physiotherapy AND conventional.

The Cystic Fibrosis Trials Register is compiled from electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL) (updated each new issue of The Cochrane Library), quarterly searches of MEDLINE, a search of EMBASE to 1995 and the prospective handsearching of two journals - Pediatric Pulmonology and the Journal of Cystic Fibrosis. Unpublished work is identified by searching the abstract books of three major cystic fibrosis conferences: the International Cystic Fibrosis Conference; the European Cystic Fibrosis Conference and the North American Cystic Fibrosis Conference. For full details of all searching activities for the register, please see the relevant sections of the Cystic Fibrosis and Genetic Disorders Group Module.

Date of the most recent search of the Group’s Trials Register: September 2006.
METHODS OF THE REVIEW

We reviewed the studies according to the protocol outlined below.

(1) Two authors from different centres independently assessed which trials should be included.
(2) Two authors independently assessed the quality of the included studies using a system as described by Jadad (Jadad 1996). In the event of disagreement about inclusion of a trial, or the quality score, we asked an independent author from a third centre to review the paper(s) in question.
(3) Each author independently extracted data on the outcome measures listed above.
(4) Reviewers used the Cochrane Review Manager software to compile and analyse the data (Review Manager 2004).

For continuous outcomes, we recorded either the mean change from baseline for each group or mean post-treatment or intervention values and the standard deviation or standard error for each group. In the case of binary outcomes, in order to allow an intention-to-treat analysis, we collected data on the number of participants with each outcome event by allocated treated group irrespective of compliance and whether or not the participant was later thought to be ineligible or otherwise excluded for treatment or follow up.

If trials had a cross-over design, the analysis that we planned to carry out is one recommended by Elbourne, however this was not possible with the data currently available (Elbourne 2002).

DESCRIPTION OF STUDIES

Summary details are given in the ‘Characteristics of included studies’ section.

Of the 126 studies of airway clearance techniques identified by the literature search, 106 were excluded as they lacked a ‘no treatment’ or ‘spontaneous coughing’ control group. Of the 20 remaining studies, two were not clinical trials; four included diagnoses other than cystic fibrosis; five did not evaluate chest physiotherapy; one because none of the outcome measures which we had defined for this review were used; one because the intervention was not thought to improve mucus clearance; and one was in participants during an intra-operative period under anaesthesia. The remaining six studies were included. These were cross-over in design and included a control period.

Mortensen compared two treatments, postural drainage combined with the FET; and PEP breathing combined with the FET with a control period (spontaneous coughing) in a three-day cross-over trial. This was described in one abstract as having 10 participants and in another abstract as having 11 participants (Mortensen 1991). In this short-term study each treatment was given only once on one of three separate days. Falk compared the same treatments and the same study design in 12 people with CF (Falk 1993).

Pfleger compared four forms of chest physiotherapy (PEP breathing, AD, PEP breathing followed by AD or AD followed by PEP breathing) with a control period (including some directed coughing) in 14 people with CF (Pfleger 1992). In this short-term study each treatment was undertaken once on separate days.

Rossman compared the immediate effect of four forms of chest physiotherapy (directed vigorous cough, postural drainage, postural drainage with mechanical percussion and conventional physiotherapy) with a control (including some requested cough periods) in six people with CF in a cross-over design (Rossman 1982). In this short-term study each treatment was given only once on separate days.

Van der Schans compared the immediate effect of two forms of chest physiotherapy (positive expiratory pressure breathing with 5 cm water pressure followed by directed vigorous coughing or PEP breathing with 15 cm water pressure followed by directed vigorous coughing) with a control period in eight CF participants in a cross-over design (van der Schans 1991). In this short-term study each treatment was given only once on separate days.

Braggion compared the immediate effect of three forms of chest physiotherapy (HFCC combined with FET and coughing, PEP combined with FET and coughing or postural drainage combined with vibrations, deep breathing, percussion or FET and coughing) with a control (spontaneous coughing) (Braggion 1995). Each regimen was used twice a day for two consecutive days.

METHODOLOGICAL QUALITY

The methodological quality scored using the Jadad score is as follows: Mortensen: 1 (Mortensen 1991); Falk: 1 (Falk 1993); Pfleger: 2 (Pfleger 1992); Rossman: 1 (Rossman 1982); van der Schans: 1 (van der Schans 1991); Braggion: 2 (Braggion 1995). The maximal score according to Jadad is five, however, two items are related to blinding of the investigator. Since blinding of the investigator is impossible in case of chest physiotherapy the maximal possible score for these studies is only three.

RESULTS

Six trials were included. All are cross-over trials and no meta-analysis was possible. All were short-term studies (less than seven days). Five studies were single treatment studies (Falk 1993; Mortensen 1991; Pfleger 1992; Rossman 1982; van der Schans 1991) and in one study each physiotherapy treatment was given four times (Braggion 1995).

(1) Expectorated secretions

Three studies, involving 36 participants, found a higher amount of expectorated secretions during chest physiotherapy compared to the control period (Braggion 1995; Pfleger 1992; Rossman 1982).
In the study by Pfleger, the mean weight of expectorated mucus during spontaneous coughing was approximately 17 g and during the three forms of chest physiotherapy between 34 to 45 g (Pfleger 1992). Braggion found a mean wet weight of expectorated secretions during the control day of 6 g and during the chest physiotherapy sessions 23 to 30 g (Braggion 1995). Rossman found a statistically significant higher volume of expectorated secretions during the different forms of chest physiotherapy compared to the control session (Rossman 1982).

(2) Pulmonary function tests
No data were available in any of the studies regarding this outcome.

(3) Oxygen saturation measured by pulse or transcutaneous oximetry
No data were available in any of the studies regarding this outcome.

(4) Total lung capacity (TLC) and functional residual capacity (FRC)
Two studies, involving 24 participants, measured TLC and FRC after chest physiotherapy and found no significant effect on pulmonary function variables following intervention (Braggion 1995; van der Schans 1991).

(5) Mucus transport rate as assessed by radioactive tracer clearance
In four studies radioactive tracer clearance was used as an outcome variable (Falk 1993; Mortensen 1991; Rossman 1982; van der Schans 1991). In three of these, involving 28 participants, it was found that chest physiotherapy, including coughing, increased radioactive tracer clearance as compared to the control period (Falk 1993; Mortensen 1991; Rossman 1982). In the study by Mortensen, median clearance after 30 minutes during control was 7% and during two different chest physiotherapy sessions was 33% and 34% (Mortensen 1991). Falk found approximately 6% clearance during the control measurement and 9% during chest physiotherapy (Falk 1993). Rossman found 32% radioactive tracer clearance during the control measurement and 40 to 46% during the different forms of chest physiotherapy (Rossman 1982). One study, of eight participants, reported no significant difference between two different chest physiotherapy sessions of PEP-breathing (clearance 10% and 6%), without coughing, compared to a control period (clearance 8%) (van der Schans 1991). Different outcomes between the study by van der Schans and the other studies can be explained by the fact that in the van der Schans study participants were requested not to cough, but coughing was encouraged in the other studies as a part of the treatment (van der Schans 1991).

(6) Radiological ventilation scanning
No data were available in any of the studies regarding this outcome.

(7) Subjective perception of well-being, ability to participate in activities of daily living
No data were available in any of the studies regarding this outcome.

(8) Therapy compliance
No data were available in any of the studies regarding this outcome.

(9) Objective change in exercise tolerance
No data were available in any of the studies regarding this outcome.

(10) Nutritional status as assessed by growth, weight, body composition
No data were available in any of the studies regarding this outcome.

(11) Number of respiratory exacerbations per year
No data were available in any of the studies regarding this outcome.

(12) Number of days in hospital per year
No data were available in any of the studies regarding this outcome.

(13) Number of days of intravenous antibiotics per year
No data were available in any of the studies regarding this outcome.

(14) Cost of intervention (equipment and duration)
No data were available in any of the studies regarding this outcome.

(15) Deaths
No data were available in any of the studies regarding this outcome.

DISCUSSION

Chest physiotherapy has been a mainstay of the respiratory management of people with CF for so long that it may now be difficult for these people, their parents, physiotherapists and medical staff to consider a trial design that incorporated a no treatment control group for any length of time. Despite there being a reasonable degree of equipoise with regard to whether physiotherapy is better than no treatment, many would argue that to recruit participants into a no treatment group would be unethical. This explains in part why there are currently no long-term trials which use this design.

Evidence from short-term or single treatment studies, which incorporate a ‘no treatment’ group, should be interpreted with caution because of the long-term nature of the disease. The clinical consequences of missing one or two treatments is unlikely to be significant. Despite this limitation, the majority of physiotherapy studies involve single treatment or short-term study designs. In addition, the small participant numbers and enormous heterogeneity of treatments and outcome measures reported in the literature make it impossible to pool results from different studies. The short-term studies that were included in this review suggest that chest physiotherapy increases mucus transport in people with CF. This finding supports the conclusion of an earlier review (Thomas 1995a).

Finally a sham or placebo treatment clearly cannot be substituted for a clearly physical intervention such as percussion, PEP or postural drainage. Similarly, participants and therapists cannot be ‘blinded’ from the treatment being received. This partly explains the low quality scores of the included studies, as the Jadad scoring
system places significant emphasis on blinding. Methodological variations between systematic reviews/meta-analyses may account for the differences in conclusions regarding treatment efficacy. The included cross-over trials may have provided potentially useful information about the efficacy of physiotherapy treatments.

AUTHORS’ CONCLUSIONS

Implications for practice

Short-term cross-over trials suggest that airway clearance regimens have beneficial effects in people with CF in regard to improving mucus transport. However, based on this review, we have not been able to find any robust scientific evidence to support the hypothesis that chest physiotherapy for the purpose of clearing airway secretions has a long-term beneficial effect in people with CF, nor to support the claim by some authors that it is harmful.

Implications for research

The gold standard for establishing efficacy of therapy is the randomised controlled trial with a ‘no treatment’ group. The application of this study design to the question in this review would be very effective. However, several ethical considerations could be raised in the discussion with regard to the withdrawal of an established and trusted treatment like chest physiotherapy in people with CF, even in the absence of firm evidence. On the other hand, it could be argued that in view of scant evidence to support the use of chest physiotherapy for people with CF and the fact that this intervention can be unpleasant, uncomfortable, and time-consuming, we believe that a study with a control group with no treatment in some circumstances is justified. Therefore, we propose that in future research, control groups or control periods should be included with sufficient numbers of included participants. This would be best studied as a parallel study over a time period of months rather than days or weeks.

NOTES

Information on previous updates

Review update: November 2005

The search of the Group's Cystic Fibrosis Trials Register identified four new references. One study identified was not eligible for inclusion in the review and has been added to the 'Excluded studies' section (Chatham 2004). The remaining three references were to three already excluded studies (Darbee 1990; Marks 1999; McIlwaine 1997).

Additional references (providing no additional information) have been added to the following already 'Included studies': Mortensen 1991; Falk 1993.

Additional references have been added to the following already 'Excluded studies': Button 1997a; Costantini 1998; Orlik 2001.

Three new studies have been added to 'Excluded studies': Hare 2002; Orlik 2000; Tannenbaum 2001.

Review update: August 2002

Six crossover trials, previously cited in “Excluded Studies” have now been moved to the “Included Studies” section (Braggion 1995; Falk 1993; Mortensen 1991; Pfleger 1992; Rossman 1982; van der Schans 1991). Relevant changes to the text of the review have been made.

Four new “Excluded Studies” have been incorporated into the review (Battistini 2001; Keller 2001; Pollard 2000; Orlik 2001).

Additional references to studies already listed in “Excluded Studies” have been incorporated into the review within the following study ID’s: Button 1997a; Gondor 1999; Grasso 2000; Marks 1999; Newhouse 1998).

POTENTIAL CONFLICT OF INTEREST

None known.

SOURCES OF SUPPORT

External sources of support

- No sources of support supplied

Internal sources of support

- No sources of support supplied
References to studies included in this review
Braggion 1995 [published data only]

Falk 1993 [published data only]

Mortensen 1991 [published data only]

Pfleger 1992 [published data only]

Rossman 1982 [published data only]

van der Schans 1991 [published data only]

References to studies excluded from this review
App 1998

Arens 1994

Bain 1988

Baldwin 1994

Baran 1977
Baran D, Penaloza A, Degre S. Physical working capacity before and after chest physiotherapy in cystic fibrosis. Cystic Fibrosis 1977;239–44.

Battistini 2001

Bauer 1994

Bilton 1992

Blomquist 1986

Braggion 1996

Button 1997a

Button 1997b

Button 1998

Castile 1998

Castle 1994

Cegla 1993

Cerny 1989

Chatham 1998

Chatham 2004

Cochrane 1977

Costantini 1998

Darbee 1990

Davidson 1988

McIlwaine PM, Davidson AGF, Wong LTK, Pirie GE, Nakielna EM. Comparison of positive expiratory pressure and autogenic drainage with conventional percussion and drainage therapy in the treatment of cystic fibrosis [abstract]. Proceedings of the Tenth International Cystic Fibrosis Congress; 1988 March 5-10; Sydney. 1988: R(d)3.

Davidson 1992

Davidson 1998

McIlwaine PM, Wong LTK, Peacock D, Davidson AGF. “Flutter versus PEP”: A long-term comparative trial of positive expiratory pressure (PEP) versus oscillating positive expiratory pressure (Flutter) physiotherapy techniques [abstract]. Pediatric Pulmonology 1997; Suppl 14: 299.

de Boeck 1984

Delk 1994

Desmond 1983

Elkins 2000

Falk 1984

Falk 1988

Fauroux 1999

Gaskin 1998

Gayer 1988

Giles 1995

Giles 1996

Gondor 1999
Gondor M, Nixon PA, Mutich R, Rebovich P, Orenstein DM. Comparison of Flutter device and chest physical therapy in the treat-
Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis (Review)

Jacobs 1981

Keller 2001

Kerrebijn 1982

Klig 1989

Kluft 1996

Kofer 1994

Kofer 1998

Konstan 1994

Kraig 1995

Lagerkvist 1997

Langenderfer 1998
Lannefors 1992

Lindemann 1992

Lorin 1971

Lyons 1992

Majaesic 1996

Marks 1999

Maxwell 1979

Mcllwaine 1997

Miller 1995

Miller S, Hall DO, Clayton CB, Nelson R. Chest physiotherapy in Cystic Fibrosis (CF) a comparative study of autogenic drainage (AD) and active cycle of breathing technique (ACBT) (formerly FET) [abstract]. *Pediatric Pulmonology* 1993;Suppl 9:240.

Morris 1982

Mulholland 1994

Murphy 1983

Murphy 1988

Natale 1994

Newhouse 1998
Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis (Review)

Copyright © 2007 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd

Oberwaldner 1986

Oberwaldner 1991

Orlik 2000

Orlik 2001

Orlik 2000

Padman 1999

Parker 1984

Parsons 1995

Phillips 1998a

Phillips 1998b

Pike 1999

Pollard 2000

Pryor 1979a

Pryor 1979b

Pryor 1979b

Pryor 1981

Pryor 1990

Pryor 1994

Pryor 1994

Reisman 1988

Roos 1987
Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis (Review)

Copyright © 2007 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd

Tannenbaum 2001

Tecklin 1976

Thomas 1995

Tonnesen 1982
Tonnesen P, Kelstrup M. Self-administered positive end expiratory pressure (PEEP) using a face mask as an alternative to conventional lung [Selvadministeret positivt slutteksspiratorisk tryk (PEEP) pa maske som alternativ til konventionel lungefysioterapi]. *Ugeskrift for Laeger* 1982;144(21):1532–6.

Tugay 2000

Tyrrell 1985

Tyrrell 1986

van Asperen 1987

van Hengstum 1987

van Hengstum 1988

van Winden 1998

VanGinderdeuren 2000

Verboon 1986

Warwick 1990

Warwick 1991

Warwick 2004

Webber 1985

White 1997

Wilson 1995

Wong 1999

Wordsworth 1996

Zapletal 1983

Znotina 2000

Additional references
Cantin 1995

Elbourne 2002

Jadad 1996

Jones 1998

Konstan 1997

Prasad 1998

Review Manager 2004

Thomas 1995a
van der Schans 1996

Zach 1990

*Indicates the major publication for the study

TABLES

Characteristics of included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Braggion 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Cross-over trial with random order of the interventions</td>
</tr>
<tr>
<td>Participants</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td></td>
<td>n = 16</td>
</tr>
<tr>
<td></td>
<td>mean (sd) age 20.3 (4) years</td>
</tr>
<tr>
<td>Interventions</td>
<td>- high-frequency chest compression</td>
</tr>
<tr>
<td></td>
<td>- postural drainage, breathing exercises, vibrations, manual percussion</td>
</tr>
<tr>
<td></td>
<td>- PEP breathing</td>
</tr>
<tr>
<td></td>
<td>- control</td>
</tr>
<tr>
<td>Outcomes</td>
<td>- wet and dry weight expectorated mucus</td>
</tr>
<tr>
<td></td>
<td>- FVC, FEV1, FEF25-75%</td>
</tr>
<tr>
<td></td>
<td>- subjective assessment</td>
</tr>
<tr>
<td>Notes</td>
<td>Measurement 30 minutes after intervention</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>A – Adequate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Falk 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Cross-over trial with random order of the interventions</td>
</tr>
<tr>
<td>Participants</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td></td>
<td>n = 12</td>
</tr>
<tr>
<td>Interventions</td>
<td>- FET, postural drainage</td>
</tr>
<tr>
<td></td>
<td>- FET, PEP breathing</td>
</tr>
<tr>
<td></td>
<td>- control</td>
</tr>
<tr>
<td>Outcomes</td>
<td>- radioactive tracer clearance</td>
</tr>
<tr>
<td>Notes</td>
<td>Measurements 30 minutes, 1 hour, 2 hours and 24 hours after intervention</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>B – Unclear</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Mortensen 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Cross-over trial with random order of the interventions</td>
</tr>
<tr>
<td>Participants</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td></td>
<td>n = 10</td>
</tr>
<tr>
<td></td>
<td>mean (sd) age 20.3 (3.4) years</td>
</tr>
</tbody>
</table>

Copyright © 2007 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd
Characteristics of included studies *(Continued)*

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Notes</th>
<th>Allocation concealment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfleger 1992</td>
<td>Cystic fibrosis
n = 14
mean (range) age 14 (9.8 - 22.4) years</td>
<td>- PEP breathing
- AD
- PEP followed by AD
- AD followed by PEP
- control, spontaneous coughing</td>
<td>- FVC, FEV1, RV/TLC, Raw
- weight expectorated mucus</td>
<td>Measurements during an immediately after intervention</td>
<td>B – Unclear</td>
</tr>
<tr>
<td>Rossman 1982</td>
<td>Cystic fibrosis
n = 6
mean (sd) age: 22.8 (5.6) years</td>
<td>- postural drainage
- postural drainage, mechanical percussion
- regimented coughing
- chest physiotherapy, breathing exercises, vibrations, manual percussion, postural drainage
- control, spontaneous coughing</td>
<td>- radioactive tracer clearance
- TLC, FRC</td>
<td>Measurements during and up to 2 hours after intervention</td>
<td>B – Unclear</td>
</tr>
<tr>
<td>van der Schans 1991</td>
<td>Cystic fibrosis
n = 8
mean (sd) age: 16 (3) years</td>
<td>- PEP breathing with a resistance of 5 cmH2O followed by 5 minutes of coughing
- PEP breathing with a resistance of 15 cmH2O followed by 5 minutes of coughing
- control followed by 5 minutes of coughing</td>
<td>- radioactive tracer clearance
- TLC, FRC</td>
<td></td>
<td>B – Unclear</td>
</tr>
</tbody>
</table>
Notes

Measurements during intervention

- AD: autogenic drainage
- FEF25-75%: forced expiratory flow 25-75%
- FET: forced expiration technique
- FEV1: forced expiratory volume at one second
- FRC: functional residual capacity
- FVC: forced vital capacity
- PEP: positive expiratory pressure breathing
- RV: residual volume
- TLC: total lung capacity

Characteristics of excluded studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>App 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Arens 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Bain 1988</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Baldwin 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Baran 1977</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Battistini 2001</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Bauer 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Bilton 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Blomquist 1986</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Braggion 1996</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Button 1997a</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Button 1997b</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Button 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Castle 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Castle 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Cegla 1993</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Cerny 1989</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Chatham 1998</td>
<td>No physiotherapy to improve mucus clearance</td>
</tr>
<tr>
<td>Chatham 2004</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Cochrane 1977</td>
<td>Mixed group of participants (cystic fibrosis, chronic bronchitis, and bronchiectasis)</td>
</tr>
<tr>
<td>Constantini 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Darbee 1990</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Davidson 1988</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Davidson 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Davidson 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Delk 1994</td>
<td>No physiotherapy to improve mucus clearance</td>
</tr>
<tr>
<td>Desmond 1983</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Elkins 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Author (Year)</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Falk 1984</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Falk 1988</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Fauroux 1999</td>
<td>No chest physiotherapy (airway clearance technique) studied</td>
</tr>
<tr>
<td>Gaskin 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Gayer 1988</td>
<td>No chest physiotherapy (airway clearance technique) studied</td>
</tr>
<tr>
<td>Giles 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Giles 1996</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Gondor 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Gotz 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Grasso 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Hare 2002</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Hartsell 1978</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Hofmeyr 1986</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Homnick 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Homnick 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Jacobs 1981</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Keller 2001</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Kerrebijn 1982</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Klig 1989</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Kluft 1996</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Kofler 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Kofler 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Konstan 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Kraig 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Lagerkvist 1997</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Langenderfer 1998</td>
<td>Not a clinical trial</td>
</tr>
<tr>
<td>Lannefors 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Lindemann 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Lorin 1971</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Lyons 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Majaesic 1996</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Marks 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Maxwell 1979</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>McIlwaine 1997</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Miller 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Morris 1982</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Mulholland 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Murphy 1983</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Murphy 1988</td>
<td>No outcome measures that were the primary purpose of this review were used</td>
</tr>
<tr>
<td>Natale 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention Details</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Newhouse 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Oberwaldner 1986</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Oberwaldner 1991</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Orlik 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Orlik 2001</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Padman 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Parker 1984</td>
<td>Mixed group of participants: four with cystic fibrosis, five with bronchiectasis, one with asthma</td>
</tr>
<tr>
<td>Parsons 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Phillips 1998a</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Phillips 1998b</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pike 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pollard 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pryor 1979a</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pryor 1979b</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pryor 1981</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pryor 1990</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Pryor 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Reisman 1988</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Roos 1987</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Salh 1989</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Samuelson 1994</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Sanchez 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Scherer 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Steen 1991</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Steven 1992</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Stiller 1996</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Stites 2006</td>
<td>Intervention not thought to improve mucus clearance</td>
</tr>
<tr>
<td>Sutton 1985</td>
<td>Mixed group of participants: five with bronchiectasis, two with chronic bronchitis and only one with cystic fibrosis</td>
</tr>
<tr>
<td>Tannenbaum 2001</td>
<td>Study in participants during intra-operative period under anaesthesia and mechanical ventilation</td>
</tr>
<tr>
<td>Tecklin 1976</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Thomas 1995</td>
<td>Not a clinical trial, a review</td>
</tr>
<tr>
<td>Tonneisen 1982</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Tugay 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Tyrrell 1985</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Tyrrell 1986</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>VanGinderdeuren 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Verboon 1986</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Warwick 1990</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Warwick 1991</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Warwick 2004</td>
<td>No control group without chest physiotherapy</td>
</tr>
</tbody>
</table>
Characteristics of excluded studies (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webber 1985</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>White 1997</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Wilson 1995</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Wong 1999</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Wordsworth 1996</td>
<td>No chest physiotherapy</td>
</tr>
<tr>
<td>Zapletal 1983</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>Znotina 2000</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>de Boeck 1984</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>van Asperen 1987</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>van Hengstum 1987</td>
<td>No cystic fibrosis participants</td>
</tr>
<tr>
<td>van Hengstum 1988</td>
<td>No control group without chest physiotherapy</td>
</tr>
<tr>
<td>van Winden 1998</td>
<td>No control group without chest physiotherapy</td>
</tr>
</tbody>
</table>

Graphs and Other Tables

This review has no analyses.

Index Terms

Medical Subject Headings (MeSH)
- Cystic Fibrosis [*therapy*]; [*Physical Therapy Modalities*]

MeSH check words
- Humans

Cover Sheet

Title
Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis

Authors
vander Schans C, Prasad A, Main E

Contribution of author(s)
Ammani Prasad and Eleanor Main independently assessed studies for inclusion in this review and assisted in writing of text.

Cess van der Schans acts as guarantor of the review.

Issue protocol first published
1999/1

Review first published
2000/2

Date of most recent amendment
15 November 2006

Date of most recent SUBSTANTIVE amendment
09 February 2000

What's New
Review update: November 2006
The search of the Group's Cystic Fibrosis Trials Register identified two new references. Both studies were excluded (Sites 2006; Warwick 2004).

Date new studies sought but none found
Information not supplied by author